Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antib Ther ; 6(3): 211-223, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37680350

RESUMO

In vivo VHH discovery approaches have been limited by the lack of methodologies for camelid B cell interrogation. Here, we report a novel application of the Beacon® optofluidic platform to the discovery of heavy-chain-only antibodies by screening alpaca B cells. Methods for alpaca B cell enrichment, culture, IgG2/3 detection, and sequencing were developed and used to discover target-specific VHH from an alpaca immunized with prostate-specific membrane antigen (PSMA) or a second target. PSMA-specific hits were expressed as VHH-Fc and characterized using label-free techniques. Anti-PSMA IgG2/3 titer plateaued on day 153, when on-Beacon IgG2/3 secretion and target binding rates peaked. Of 13 recombinantly expressed VHH-Fc, all but one bound with nanomolar affinity, and five were successfully humanized. Repertoire sequencing uncovered additional variants within the clonal lineages of the validated hits. The establishment of this workflow extends the powerful Beacon technology to enable rapid VHH discovery directly from natural camelid immune repertoires.

2.
Antib Ther ; 4(3): 185-196, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34541454

RESUMO

BACKGROUND: Rapid deployment of technologies capable of high-throughput and high-resolution screening is imperative for timely response to viral outbreaks. Risk mitigation in the form of leveraging multiple advanced technologies further increases the likelihood of identifying efficacious treatments in aggressive timelines. METHODS: In this study, we describe two parallel, yet distinct, in vivo approaches for accelerated discovery of antibodies targeting the severe acute respiratory syndrome coronavirus-2 spike protein. Working with human transgenic Alloy-GK mice, we detail a single B-cell discovery workflow to directly interrogate antibodies secreted from plasma cells for binding specificity and ACE2 receptor blocking activity. Additionally, we describe a concurrent accelerated hybridoma-based workflow utilizing a DiversimAb™ mouse model for increased diversity. RESULTS: The panel of antibodies isolated from both workflows revealed binding to distinct epitopes with both blocking and non-blocking profiles. Sequence analysis of the resulting lead candidates uncovered additional diversity with the opportunity for straightforward engineering and affinity maturation. CONCLUSIONS: By combining in vivo models with advanced integration of screening and selection platforms, lead antibody candidates can be sequenced and fully characterized within one to three months.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...